Nonlocal pseudopotentials and diffusion Monte Carlo
نویسندگان
چکیده
We have applied the technique of evaluating a nonlocal pseudopotential with a trial function to give an approximate, local many-body pseudopotential which was used in a valence-only diffusion Monte Carlo (DMC) calculation. The pair and triple correlation terms in the trial function have been carefully optimized to minimize the effect of the locality approximation. We discuss the accuracy and computational demands of the nonlocal pseudopotential evaluation for the DMC method. Calculations of Si, SC, and Cu ionic and atomic states and the Si, dimer are reported. In most cases 90% of the correlation energy was recovered at the variational level and excellent estimations of the ground state energies were obtained by the DMC simulations. The small statistical error allowed us to determine the quality of the assumed pseudopotentials by comparison of the DMC results with experimental values.
منابع مشابه
Importance of High Angular-Momentum Channels in Pseudopotentials for Quantum Monte Carlo
Quantum Monte Carlo methods provide in principle a highly accurate treatment of the many-body problem of the ground and excited states of condensed systems. In practice, however, uncontrolled errors such as those arising from the fixed-node and pseudopotential approximations can be problematic. We show that the accuracy of some quantum Monte Carlo calculations is limited by using available pseu...
متن کاملComputing the exit-time for a finite-range symmetric jump process
Abstract. This paper investigates the exit-time for a broad class of symmetric finite-range jump processes via the corresponding master equation, a nonlocal diffusion equation suitably constrained. In direct analogy to the classical diffusion equation with a homogeneous Dirichlet boundary condition, the nonlocal diffusion equation is augmented with a homogeneous volume constraint. The volume-co...
متن کاملMolecular electronic structure using auxiliary field Monte Carlo, plane-waves, and pseudopotentials
Shifted contour auxiliary field Monte Carlo is implemented for molecular electronic structure using a plane-waves basis and norm conserving pseudopotentials. The merits of the method are studied by computing atomization energies of H2, BeH2, and Be2. By comparing with high correlation methods, DFT-based norm conserving pseudopotentials are evaluated for performance in fully correlated molecular...
متن کاملQuantum Monte Carlo study of sodium
We report a variational and diffusion quantum Monte Carlo study of sodium. Pseudopotentials are used to represent the ion cores, and core-valence correlation effects are included by using a core polarization potential. When the core polarization potential is included we obtain an excellent value for the first ionization energy of the atom and a good value for the cohesive energy of the solid. V...
متن کاملEnergy-consistent pseudopotentials for quantum Monte Carlo calculations.
The authors present scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. They demonstrate their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In...
متن کامل